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A statistical model based on the proposition that the turbulence of a fully developed 
two-dimensional incompressible mixing layer is in a state of quasi-equilibrium is 
developed. I n  this model the large structures observed by Brown & Roshko (1 974) 
which will be assumed to persist into the fully developed turbulent region are rep- 
resented by a superposition of the normal wave modes of the flow with arbitrary 
random amplitudes. The turbulence a t  a point in the flow is assumed to  be dominated 
by the fluctuations associated with these large structures. These structures grow and 
amalgamate as they are convected in the flow direction. Because of the lack of intrinsic 
length and time scales the turbulence in question can, therefore, be regarded as 
created or initiated a t  an upstream point, the virtual origin of the mixing layer, by 
turbulence with a white noise spectrum and are subsequently convected downstream. 
The model is used to predict the second-order turbulence statistics of the flow including 
single point turbulent Reynolds stress distribution, intensity of turbulent velocity 
components, root-mean-square turbulent pressure fluctuations, power spectra and 
two-point space-time correlation functions. Numerical results based on the proposed 
model compare favourably with available experimental measurements. Predictions of 
physical quantities not yet measured by experiments, e.g. the root-mean-square 
pressure distribution across the mixing layer, are also made. This permits the present 
model to be further tested experimentally. 

1. Introduction 
I n  this paper a statistical model of turbulence in fully developed two-dimensional 

incompressible turbulent mixing layers is proposed. The development of this model is 
largely motivated by the recent experimental observations of Brown & Roshko 
(1974). They found that in this class of flows the turbulence field consists of many 
large vortex-like structures. The sizes of these structures are of the order of the local 
mixing layer thickness. The dynamics of the large vortex-like structures is governed 
by the processes of convective amplification (the large structures grow as they are 
being convected downstream) and amalgamation. The former process infers that the 
turbulence state a t  any cross-section of the mixing layer downstream can be considered 
as being excited or created a t  an upstream point and then convected to the point in 
question. The latter process assures that the turbulent fluctuation at any point is 
stochastic or random. These two important observations suggest that perhaps the 
state of turbulence a t  any cross-section in a fully developed two-dimensional turbulent 
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mixing layer can be regarded as initiated upstream by turbulence with a completely 
random white noise spectrum. The reason that the upstream spectrum should have 
white noise characteristics is that  for sufficiently high Reynolds number flow the 
problem has no intrinsic length and time scales. The lack of intrinsic length and time 
scales renders the two-dimensional mixing layer flow and all its turbulence statistics 
similar. Physically, similarity implies that  the flow is in a dynamical quasi-equilibrium 
state. So a statistical model patterned after the approach of classical statistical 
mechanics becomes attractive and feasible. To implement this idea i t  will be assumed 
that in terms of a set of dimensionless similarity co-ordinate variables formed by using 
the local mixing layer thickness as the length scale, the fluctuations associated with 
the large structures which dominate the turbulence field can be represented by a 
superposition of the normal modes (hydrodynamic wave modes) of the flow. This 
interpretation of flow similarity and the two key observations of Brown & Roshko 
(1974) form the basis of our proposed statistical model. The formulation of this model 
is described in detail in 3 2 below. 

I n  the past a number of theories of turbulence based on hydrodynamic stability 
solutions of the mean flow profile have been proposed by various authors. However, a 
closer examination reveals that the basic premise and formulation of these theories 
differ completely from the present model. The first theory of this kind was proposed 
by Malkus (1956) who studied the turbulent shear flow between two parallel plates. 
In  his theory the marginally stable waves were singled out among all the wave modes. 
These marginally stable waves played a crucial role in determining the mean velocity 
profile in his analysis. Subsequently, the turbulence in a boundary layer was investi- 
gated by Lsndahl (1967, 1975) and Bark (1975) using a wave-guide model. It was 
shown that in this case all the small amplitude waves were damped. In Landahl’s 
work the least damped waves were assumed to dominate over the other kinds of 
disturbances. So that by determining the decay rate and convection velocity of these 
waves numerically Landahl was able to estimate the corresponding quantities of the 
turbulence field of a flat-plate boundary layer. I n  contrast to the parallel plates and 
the boundary-layer problems the present two-dimensional mixing layers are known to 
possess unstable mean velocity profiles. As a result, the unstable spectrum is most 
important in the proposed model. Although stability waves or normal modes of the 
flow are used in our formulat,ion, they are only to be regarded as a convenient way of 
representing the wave decomposition of the large structures. On the other hand, 
waves of this kind in turbulent free shear flows have recently been observed by Chan 
(1974a, b,  1976, 1977) and Moore (1977). They found that the gross properties of these 
waves agreed quite well with the prediction of locally parallel flow stability analysis. 
Thus these experiments actually provide a physical basis to an otherwise purely 
mathematical representation of the turbulent large structures in the mixing layer. 

The main objective of this work is to predict the second-order turbulence statistics 
of two-dimensional fully developed turbulent mixing layers. These statistics include 
turbulent Reynolds stress, intensities of turbulent velocity components, distribution 
of root-mean-square pressure fluctuations, power spectra and two-point space-time 
correlation functions. Not all these quantities have been measured in the past so 
that some of the predictions of this work can actually be verified or disproved experi- 
mentally. I n  $ 4  numerical results of the present model are used to  compare with 
available experimental measurements. Favourable overall agreements are found 
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FIGURE 1. A stretch of large structures in a two-dimensional mixing layer. 

lending support to the general validity of the proposed statistical model. Further 
discussions of this model in relation to laboratory experimental measurements and 
other turbulence transport theories are given a t  the end of this paper. 

2. Formulation 
Before we present our proposed statistical model of turbulence in two-dimensional 

mixing layers we will first review some of the most pertinent experimental findings of 
the last few years which in many ways have radically changed our concept of turbulence 
in this class of flows. Contrary to the classical notion of turbulence, recent experimental 
observations of Brown & Roshko (1974), Roshko (1976), Dimotakis & Brown (1976) 
revealed that turbulence in two-dimensional mixing slayers is far more orderly than 
had previously been believed. The turbulence field is found to  be dominated by large 
vortex-like structures, see figure 1. Motion pictures taken by Brown & Roshko 
indicate that these large structures are initiated near the trailing edge of the splitter 
plate which marks the beginning of the mixing layer. These structures grow in size as 
they are convected downstream. To accommodate this growth the spacings between 
neighbouring structures undergo constant changes. Every now and then two (or three) 
of these vortex-like structures would coalesce to form a single larger structure. This 
process, which was observed to occur more prominently at low Reynolds number by 
Winant & Browand (1974)) is generally referred to as ‘vortex pairing’ (or tripling). I n  
high Reynolds number flows the pairing process once started is usually completed in 
very short intervals of time. I n  addition to the pairing phenomenon Dimotakis & 
Brown (1 976) observed that a large structure may abruptly disintegrate in the straining 
field of the adjacent large structure (or structures). When this takes place the fluid 
associated with the disintegrated structure then becomes a part of the collective 
motion of the neighbouring structure (or structures). They called this process of 
amalgamation ‘tearing ’. Acting together the mechanisms of ‘vortex pairing ’ and 
‘tearing’ are instrumental in randomizing the space-time trajectories of the large 
structures. Thus although a single large structure may appear as quasi-deterministic 
the sum total of all the large structures in the mixing layer amalgamating randomlg in 
space and time gives the overall phenomenon a stochastic and chaotic character 
typical of turbulent flows. As far as is known the surviving large structures have 
extremely long lifetimes. I n  all the experiments mentioned above they seemed to 
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FIGURE 2. Idealized two-dimensional incompressible fully developed turbulent 
mixing layer with no intrinsic length and time scales. 

persist all the way to the end of the testing sections. On the basis of this fact it is 
believed that the large structures actually constitute the dominant part of the tur- 
bulence field in what was previously known as fully developed turbulent mixing layers. 

2.1. A quasi-equilibrium statistical model 
We will now restrict our attention to an idealized two-dimensional incompressible 
mixing layer which is in a fully developed turbulent state as shown in figure 2. We will 
neglect the boundary layer on the splitter plate so that the mixing layer begins a t  a 
point, viz. the trailing edge of the splitter plate (one can consider this to be the virtual 
origin ofa  fully developed turbulent mixing layer). In  this work our objective is not to 
describe the quasi-deterministic behaviour of the large structures of the turbulence. 
Rather, our aim is to develop a statistical model capable of predicting the second- 
order turbulence statistics of the flow. These include single point statistics such as 
the turbulence Reynolds stress, (uv) ,  turbulent kinetic energy components, (uz), (t9) 
and (w2), pressure fluctuations ( p 2 ) ,  power spectrum ( u 2 (  f )) etc. and two-point space- 
time correlation functions (( ) = ensemble average). In  developing the present model 
explicit reference to individual vortex-like large structure and its motion will not be 
made. Here only the collective behaviour of all the large structures in the mixing layer 
is of importance in calculating statistical averages. For this purpose we will describe 
the large structures by wave representation (decomposition of the large structures 
into appropriate wave components). The use of a wave representation is not simply 
only a matter of mathematical convenience; it can be partly justified on physical 
grounds. Dimotakis & Brown ( 1  976) have demonstrated that the large structures in a 
mixing layer are strongly coupled or locked to each other even for those that are very 
far apart. This long range interaction causes the overall motion of the row of large 
structures to be wave-like although individually the internal motion of a single 
structure may be vortex-like. Since we will not be interested in a single large structure 
alone the use of a wave decomposition to describe the motion of the large structures 
is, therefore, quite appropriate. 

The following two hypotheses will be used in formulating our statistical model. 
( 1 )  Only flow fluctuations associated with the large structures are considered 

(2) The flow is similar. 
important in determining second-order turbulence statistics. 

Both hypotheses are supported by experimental evidence. The first hypothesis needs 
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no further elaboration as it is the subject of many recent works; some of which have 
been discussed above. Chandrsuda et al. (1978) recently suggested that under normal 
laboratory conditions (without taking extreme precaution in eliminating external 
disturbances) the large structures in fully developed turbulent mixing layers might be 
less orderly than those observed by Brown & Roshko (1974). However they do believe 
that the large structures are the dominant elements of the turbulence field. The 
second hypothesis is rooted in the observation that the idealized problem (see figure 
2) has no intrinsic length and time scales when the flow Reynolds number is very large. 
Bccause of the lack of intrinsic length scale all the ensemble-averaged physical 
quantities of'the problem which have a length dimension must vary like x ,  the distance 
measured downstream from the initial point of the two-dimensional mixing layer, or 
the local thickness, 6, of the shear layer. The local thickness 6 = x / c ,  where CT is the 
spreading parameter, is a slowly varying function of x. In  addition, all the variables 
with dimension of time must vary like x/tJm or S/Um where U, is the free-stream 
velocity. Similarity applies not only to the mean flow profile alone but to all ensemble- 
averaged turbulence statistics (second- and all higher-order statistics) as well. To 
demonstrate the cxistencc of similarity in turbulence statistics extensive and laborious 
experimental measurements are necessary. As a result of the enormous amount of 
effort needed, available experimental data are generally confined to only a few single 
point second-order statistics. They can be found in the works of Liepmann & Laufer 
(1947), Wygnanski OZ Fiedler (1970), Patel (1973), Champagne, Pao & Wygnanski 
(1976); most of these data do support the similarity argument. Figure 3 shows the 
normalized longitudinal turbulent velocity power spectrum 

(where S = .fx/Um is the Strouhsl number and f is the frequency) a t  various axial 
distances downstream of the nozzle exit in the initial mixing layer of a 3.5 in. diameter 
jet measured by Laurence (1956). The flow Mach number was 0.3 and the data were 
taken along a line a t  approximately one radius from the centre-line of the jet. As can 
be seen, with x/Ua as the time scale a reasonably good collapse of the power spectra 
data is obtained indicating that the turbulent shear layer flow is quite similar. 

Physically, similarity implics that the turbulent fluctuations are in a state of quasi- 
equilibrium. This can be visualized by following the flow as it moves downstream. 
Since the change in local thickness S of the shcar layer is very slow and all the statistical 
averages of the state of the turbulent flow are scaled according to 6 they are effectively 
constants (at least locally). To the order of approximation that the rate of change of 
6, i.e. dS /dx  = 1/v < 1 ,  is negligible the flow is essentially stationary with respect to 
time as the flow moves downstream and hence it is in statistical quasi-equilibrium. 
For systems which are in equilibrium such as a gas at thermal equilibrium or phonons 
in black body radiation problems, classical statistical methods can be applied to  
determine some of the gross properties of the systems. One of the attractive features 
of these statistical approaches is that  the detailed interaction between the numerous 
components which make up the system need not be known. I n  the present case if a 
similar statistical method is used, a detailed understanding of the nonlinear interaction 
between different scale components of turbulence could probably be avoided. This 
is .the key factor of the present statistical model. Making an analogy to  the problem 
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FIGURE 3. Normalized longitudinal turbulent spectra at various axial distances downstream of 
the nozzle exit of a 3.5 in. diameter jet a t  approximately one radius from the centre-line. Flow 
Mach number is 0.3. Data taken from Laurence (1956). 

of black body radiation from a cavity a t  thermal equilibrium, we will assume that the 
turbulent fluctuations u, v, w (velocity components) andp (pressure) can be represented 
by a linear combination of the normal wave modes of the flow. The amplitudes of the 
modes are, however, considered as stochastic random functions. That is: 

turbulent fluctuations = ai. (ith normal mode of the flow), (2.1) 
i 

where ai is a random function. A more precise statement of this normal mode rep- 
resentation will be given later. 

Similarity also implies that the state of turbulence has no memory of its past 
history. I n  fact, it does not matter whether the flow begins with a laminar or turbulent 
initial condition, the characteristics of the fully developed turbulent region are the 
same. I n  a turbulent flow the nonlinear process of ‘vortex pairing’ and ‘tearing’ 
completely randomize the large structures and as a result cause the flow to attain an 
asymptotic similarity state. The lack of dependence on initial conditions is extremely 
important for the turbulence can now be regarded as generated by a completely 
random initial excitation having no characteristic length and time scales. This 
provides a constraint on the turbulence spectrum or the random wave amplitudes of 
the normal modes of the flow. Mathematically, in conjunction with the wave rep- 
resentation of the turbulence field adopted above this condition can be stated as 
follows. The wave spectrum of the turbulent state at any position downstream (see 
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figure 2) can be considered to  be initiated by a completely random excitation a t  the 
virtual origin of the mixing layer. I n  terms of the correlation function of the turbulent 
velocity components a t  the virtual origin this can be expressed as 

1 
- (u(z,  t )  u(z  + 5, t + 7) + v(z, t )  v(z + g, t f7) + w(z,  t )  UJ(Z  + 5, t + 7)) = 4n2XS(g) 6(7), uz, 

(2.2) 
where S(5) and S(T) are Dirac delta-functions and is the area of the autocorrelation 
function; ( ) = ensemble average. 

To sum up, our statistical model of turbulence consists of representing the turbulent 
fluctuations by the normal modes of the flow with random amplitudes. The distribu- 
tion of the amplitudes is to be determined by the condition that the turbulent wave 
spectrum a t  any downstream location could be considered as generated by an initial 
spectrum whose kinetic energy has no intrinsic length or time scales, namely, a white 
noise spectrum. The last statement is equivalent to  requiring its autocorrelation 
function to have delta function characteristics. 

2.2. Normal mode representation 
We will represent the large structures of the mixing layer by linear combination of the 
hydrodynamic stability modes of the flow. They are given by the eigensolutions of the 
Orr-Sommerfeld equation. However, we like to point out that  we are not interested 
in analysing the stability of the mean flow. Our objective is to  find a simple way to  
best represent the large structures. I n  the mixing layer the temporal mean flow is 
certainly not the mean flow as seen by the large structures. We believe that the 
conditional turbulent mean flow profile is probably a much better approximation for 
our purpose and will, therefore, be used in all subsequent analysis and computation. 
Figure 4 shows the conditional turbulent mean flow profile, UT/Um, as measured by 
Wygnanski & Fiedler (1970). A reasonably good fit to  the measured data in terms of 
simple analytic functions is 

( 2 . 3 ~ )  
where 7 = ~ / 6 + 7 ~ ,  6 = X / U ,  = 11, yo = 0.08. (2.3 b )  

(UT/Um) = 0.6 + 0-4 tanh 7, 
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The linearized equations of motion with (U,, 0, 0) as the mean flow are: 

( 2 . 4 ~ )  

(2 .4b )  

( 2 . 4 ~ )  

(2 .4d )  

where vT is a turbulent eddy viscosity provided by the fine scale turbulence of the flow. 
We will delay the discussion on vT and its appropriateness to a later section. Let the 
Fourier transform of a function c j  in z and t be denoted by 4'. The Fourier transform 
pair c j  and 6' are related by 

( 2 . 5 ~ )  

The Fourier transforms of equations ( 2 . 4 )  are : 

a i i r  aa. 
ax ay 
-+-+icr$' = 0; ( 2 . 6 ~ )  

Now fundamental to the assumption of our quasi-equilibrium model is that the spatial 
rate of change in S is negligible. Therefore, by regarding S as a constant (at least locally), 
(2 .6 )  can be rewritten in terms of the following similarity co-ordinate variables. 

f [  = X I S ,  7 = Y/S+TO. (2 .7)  

These similarity variables effectively transform the slowly divergent turbulent mixing 
layer into a parallel flow. This is illustrated in figure 5 .  The use of similarity co-ordinate 
variables ( 5 , ~ )  is important for it is in the f [ ,  plane that the turbulent flow is stationary 
random. Now (2 .6 )  can be put into a dimensionless form using the following 
variables, 
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FIQURE 5 .  Mapping of tho mixing layer into the 5, 7 plane where the turbulence is stationary 
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( 2 . 9 ~ )  

(2 .9b )  

( 2 . 9 ~ )  

(2 .9d )  

We will now look for separable wave-like solutions of equation ( 2 . 9 )  of the form 

.ii = &(y, i%, 55) eikt, 

2? = 6(7, Zi, sj) eikt, 

G = a(?, E ,  0) eikt 

and 9 = @(7, E,  0) e ik t .  

Upon substitution of (2 .10 )  into equation ( 2 . 9 )  and elimination of all other variables 
we obtain the familiar Orr-Sommerfeld equation for 3 except that  the conditional 
turbulent mean velocity profile is to be used, 

(2 .10 )  1 
The appropriate boundary conditions are 

O - t O  as r++co. (2 .12)  
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For given real values of 55 and a: equation (2.1 1)  and boundary condition (2.12) form 
an eigenvalue problem by which the complex eigenvalue k = k, + ik, (k, and ki are the 
real and imaginary parts of k) is determined. I n  the appendix it is proven that the 
eigenvalues and the corresponding eigenfunctions 0, 42, 8 and j3 possess a number of 
important properties. 

(i) The eigenvalues and eigenfunctions are invariant to  the transformation E+ - 2. 
(ii) If k = k , ( ~ ,  G) +&%(El W) is an eigenvalue, then k(E,  - W) is also an eigenvalue. 

It is related to k(Z, W) by the relation 

(2.13) 

where * denotes the complex conjugate. 
(iii) When properly normalized the eigenfunction corresponding to  ( E ,  - W) is the 

complex conjugate of that  of (a, W), i.e. 

6*(7, 3, W) = 0(7, E ,  - W). (2.14) 

Since 0 is a complex function we can adopt two real normalization conditions. To 
ensure that equation (2.14) holds we will require that 

S(O,Cw, W) = q o ,  a, -G), ( 2 . 1 5 ~ )  

that  is they are real and equal. I n  addition, for convenience, we will normalize the eigen- 
functions so that a t  7 = 0 the sum of the squares of the absolute values of a, 0, and 8 is 

(2.15b) 
equal to unity: 

After the eigenvalue k and eigenfunction 0 are found and the latter properly 

k ( Z ,  - W) = -/I*@, W), 

I / i i ( O , ~ , ~ ) 1 2 +  I B ( O , E , W ) ~ ~ +  18(0,Z,W)i2 = I .  

normalized, the pressure j3 is computed according to the formula 

Equation (2.16) can easily be derived from (2.9) by eliminating 42 and i2. The longi- 
tudinal and lateral velocity components Q and 8 cannot be obtained explicitly in 
terms of 0, j3 and their derivatives. They are to be found bx integrating the inhomo- 
geneous equations (2.9b) and (2.9d) with the boundary conditions Q, 8-t 0 as 7-f 03. 

The eigenvalue problem (2.11) and (2.12) has been studied by many authors in the 
past. It has been found that for a mean velocity profile typical of that given by 
equation ( 2 . 3 ~ )  there is only one family of unstable eigensolutions. It can be shown 
that only the unstable wave components contribute significantly to the second-order 
statistics of the flow turbulence. Thus for simplicity we will only consider the con- 
tribution of this family of eigensolutions. Let u(a, w )  be the stochastic random ampli- 
tude function of the unstable wave mode. Then by Fourier inverse transforms the 
turbulent T. eiocity and pressure fluctuations in the mixing layer will be given by: 
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2.3. Properties of random amplitude function a(a, w )  

To complete the formulation of our statistical model we will proceed to find the 
stochastic properties of the random amplitude function a(a, w ) .  This is done by 
invoking (2.2) which requires that the turbulence at any location downstream of the 
trailing edge of the splitter pIate can be regarded as generated by turbulent excitations 
at  the virtual origin of the mixing layer, i.e. the origin of the similarity plane fs = 7 = 0 
(see figure 5) .  The autocorrelation function of the turbulent kinetic energy a t  the 
virtual origin has no characteristic length and time scales. Using (2.2) and the expres- 
sions of u, v ,  and w given in (2.17) we have at 5 = 7 = 0, that  

x exp{i[(a+a’)z- ( w + w ’ ) t ]  +i(a<-w7))da’dw’dadw = 4n2R8(<)6(7). 
(2.18) 

By direct substitution (or by repeated use of Fourier transform) and normalization 
condition (2.15) it is straightforward to show that the solution of the integral equation 

(2.19) 
(2.18) is 

(a(., o) a(a’, 0’)) = R6(a+ a’) 6(w + w ’ ) ,  

where R = RS2/Um. 

I n  (2.19) R is a dimensionless number and 6(a+a’) and S(w+w‘ )  are Dirac delta- 
functions. 

By assuming the existence of similarity and that the mean flow profile can be 
approximated by an error function, Townsend (1956, pp. 174-178) has shown that the 
turbulent Reynolds stress ( u v )  a t  the half-velocity point of a mixing layer is equal to 

where E =  288. A good approximation of the mean velocity gradient a t  the half 
velocity point is i x a .  Using his measured value of the spreading parameter a, Patel 
(1973) found that Townsend’s result leads to the condition 

-- (uv) - 0.0096 (at the half-velocity point). (2.20) 
U %  

Patel verified experimentally that (2.20) agreed quite well with his measured turbulent 
Reynolds stress data. Here we will use this condition to  determine the remaining 
unknown of our model, R of equation (2.19), and thus the stochastic properties of the 
random amplitude function a(a, w )  are completely determined. 
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3. Second-order turbulence statistics 
I n  this section we will use the statistical model of f3 2 to develop formulae for the 

computation of second-order turbulence statistics. We will start with single-point 
statistics and then discuss two-point space-time correlation functions. 

3.1. Single-point statistics 

From equation (2.17) the autocorrelation function of the longitudinal turbulent 
velocity fluctuations is given by 

x exp { i [ ( k  + k') (T+ (a + a') z - (w + w ' )  t ]  - iw7}dada'dwdw', ( 3 . 1 )  

where 

Upon using (2.19) and eigenvalue and eigenfunction properties ( 2 .  f 3 )  and (2 .14)  we 
find after integrating over a' and w' 

By putting 7 = 0 in equation (3.2) the distribution of kinetic energy associated with 
longitudinal turbulent velocity fluctuations is found; 

The power spectrum of the kinetic energy associated with longitudinal turbulent 
velocity fluctuations is equal to the Fourier transform of the autocorrelation function 
which is given by equation ( 3 . 2 ) .  I n  terms of Strouhal number S = fx/Um (where f is 
the frequency; f 2 0 )  it is straightforward to find the following formula for the power 
spectrum (per unit Strouhal number 8): 

By replacing lhI2 with appropriate quantities in the above equation the autocor- 
relation function, power spectrum and distribution of the squares of other turbulent 
fluctuation quantities such as v, w, and p can be found. 

One turbulence statistic which is of particular interest and significance is the 
turbulent Reynolds stress (uv)/U:. Using (2 .17)  it can be computed as follows: 

x exp { i [ ( k  + k') cr+ (a + a') .z - (w + 0') t ] }da 'dw'dadw.  (3.5) 
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Substituting (2.19) into (3.5) and carrying out the integrations over a' and w' we 
obtain 

(3.6) 
~ ( U U ( 7 ) )  = 4R//0-a, Re {a(q, Z, W) O*(r, a, W) exp ( - 2k, a)> d a d o  

U2l 

where Re { > = the real part of. 

3.2. Two-point space-time correlation ,functl:ons 

Let us now consider the two-point space-time correlation functions of longitudinal 
turbulent velocity fluctuations a t  (x,, y,, 2) or (c, ql, z )  and (T,, y,, z + 6 )  or (<, q,, z + 6 )  
where 6 is equal to 6, and 6, respectively. Using the expressions (2.17) we have 

x exp (i[a'5- ~ ' 7 1 )  dadwda 'dw ' ,  (3.7) 

where k,  = k(a6,, w S , / U , )  and k; = k(a'S,, w'cY2/Um). Upon invoking equation (2.19) 
and integrating over a and w and dropping the primes of the remaining integration 
variables, a' and w',  we find 

x exp {i[( - k: + k,) a + ac- WT]} d a  dw. (3.8) 

To show that the right-hand side of equation (3.8) is a real function let us integrate 
equation (3.7) over a' and of instead of a and w in the step that leads to (3.8).  This 
gives 

x exp {i[(kl - k,*) v - ac+ MI} d a  do. (3.9) 

The right-hand side of equation (3.8) and (3.9) are the complex conjugate of each 
other so that the expression is real. 

I n  the next section we will use the numerical results computed according to the 
above formulae to compare with experimental measurements. 

4. Numerical results and comparison with experiments 
Before we study the numerical results of our statistical model we will first discuss 

what is the appropriate turbulent Reynolds number, R,, to be used in equations 
(2.9) and (2.11). The introduction of the turbulent eddy viscosity terms in equation 
(2.4) is, of course, an empirical way to simulate the effect of the fine-scale turbulence 
on the large structures. Physically, the role of the fine-scale turbulence is to smooth 
out very steep local velocity gradients. This effect, however, should have an in- 
significant influence on the overall dynamical properties of the mixing layer turbulence. 
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Mathematically, it  is well known that for sufficiently large turbulent Reynolds 
number the eddy viscosity terms of the Orr-Sommerfeld equation are unimportant 
as far as unstable waves of the two-dimensional mixing layers are concerned. Never- 
theless, near the critical points of neutrally stable waves and damped waves the 
smoothing action of the fine scale turbulence is essential if discontinuous eigenfunctions 
are to be avoided (see Lin 1967, chap. 8). For the purpose of computing second-order 
turbulence statistics we note that in equations (3.2) to (3.6) the contributions of various 
components of the wave spectrum are weighted by the factor exp [ - 2L, v]. For the 
most unstable wave-component this factor is approximately equal to 19.75. For 
damped waves this factor is less than unity. Thus the second-order statistics are 
dominated by the contributions from the unstable part of the wave spectrum so that 
they are numerically almost totally unaffected by the precise choice of the value of 
turbulent Reynolds number R,. 

As a start in choosing an appropriate value of RT we note that the result of Townsend 
(1 956, pp. 174-178) mentioned earlier gives an effective turbulent eddy viscosity 
V, = U,x/2R ( R  = 288) a t  the half velocity point. The corresponding turbulent 
Reynolds number R ,  is ~ R / ( T .  It is approximately equal to 52 for a spreading para- 
meter CT = 1 1. This is, of course, the effective turbulent Reynolds number of both the 
large and small-scale turbulence of the mixing layer and is not the turbulent Reynolds 
number to be used. It is to be borne in mind that the turbulent Reynolds stress of 
the mixing layer is completely dominated by the effect of the large structure. However, 
this value of R,  does give us a lower limit for R,. We believe that a reasonable value 
of RT which simulates the turbulent mixing effect of fine scale turbulence is probably 
a factor of 5 or 10 larger than this lower limit, say R, = 500. To see how the choice 
of the value of R, influences the eigenvalue and the various eigenfunctions 0, 42, etc. 
of the Orr-Sommerfeld problem we carried out a number of numerical experiments. 
The results of these computations can be summarized as follows. 

(1) For unstable waves ( - Li > 0)  the eigenvalue k is numerically unaffected by 
R, for R, > 300. The unstable waves are confined to a limited region of the G, Z 
plane as shown in figure 6. I n  this figure contours of constant - ki for the mean velocity 
profile given by ( 2 . 3 ~ )  in the inviscid limit, i.e. R,-+oc), are displayed. (Note that for 
the unstable and neutrally stable cases the inviscid eigenvalue problem of equations 
(2.1 1) and (2.12) yields well-behaved eigenvalue and eigenfunctions.) 

(2) For R, 2 300 the unstable eigenfunction 0 is only slightly affected by R,. A 
typical case is shown in figures 7 and 8. As can be seen the real part of 8 is practically 
the same for R, = 500 as for the inviscid limit, R, = oc). The imaginary part of 0 is 
on the other hand, slightly modified by finite turbulent Reynolds number effect. But 
Re (0) is much larger than Im (01 so that the overall effect of finite turbulent Reynolds 
number is still negligible. 

From a computational point of view, enormous savings of computer time can be 
realized by carrying out the eigenvalue problem in the inviscid limit. Since the eigen- 
values k and eigenfunctions 0, fi are only insignificantly modified by finite turbulent 
Reynolds number we decide to carry out all our subsequent calculations (for unstable 
waves) of these quantities using the inviscid Orr-Sommerfeld or Rayleigh equation. 
The corresponding eigenfunctions 42 and 12, are, however, computed according to 
equations (2.9b) and (2.9d) with a finite value of R,. Figure 9 shows an example of the 
difference in Reynolds stress distribution computed in this way (inviscid 0 ,  viscous 0 
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w 
FIGURE 6. Contours of equal - ki in the 6, Z plane showing the unstable region. 

I I I I I I 1 I 
-4.0 .-3-o -2.0 -1.0 0 1 .o 2.0 3.0 4.0 

17 
FIGURE 7. Effect of turbulent Reynolds number on the real part of the eigenfunction, 

Z = 0.5, l j  = 0.425. -, RT = 500; x - x , RT = 03. 

with R, = 500) and that computed using the full Orr-Sommerfeld equation. As can 
be seen the overall distribution across the mixing layer remains essentially unchanged. 

(3) The second-order turbulence statistics of the mixing layer as computed by the 
present model are insensitive to the turbulent Reynolds number used. Figures 10, 
11 and 12 show typical examples of these quantities a t  three turbulent Reynolds 
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0.2 

FIGURE 8. Effect of turbulent Reynolds number on the imaginary part of the 
eigenfunction, Z = 0-5, ij = 0.425. --, RT = 500; x - x , RT = CO. 

- - 

numbers; RT = 150, 300 and 500. As can be seen, there is no appreciable difference 
between the cases R, = 300 and R, = 500 throughout the mixing layer. 
(4) The damped wave components contribute an insignificant fraction to the second- 

order turbulence statistics. 
I n  view of (3) above RT is chosen to  be equal to 500 in all subsequent calculations 

of this paper. 
Before comparing our numerical results with experimental measurements we feel 

it is important to  point out that there are noticeable differences among the measured 
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-1.0 -0.5 0 0.5 I .o 

FIGURE 10. Effect of turbulent Reynolds number on -Re {d.C*); ?i = 0.2, 
0 = 0.265. -, RT = 500; --, RT = 300; ---, RT = 150. 
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FIGURE 11. Effect of turbulent Reynolds number on (121~; ?i = 0.2 , i j  = 0.265. 
__ , RT = 500; --, RT = 300; ---, RT = 150. 

results available in t,he literature. Further, the measured data are invariablj restricted 
to single point second-order turbulence statistics. Even then, they are not complete, 
for the distribution of root-mean-square pressure fluctuations, an important quantity 
for noise prediction purposes, does not seem to have been measured a t  all. The first 
comprehensive turbulence measurements in a two-dimensional mixing layer were 
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L -1 

0.2 

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 
9 

FIGURE 12. Effect of turbulent Reynolds number on 1&12; E = 0.2, 
w = 0.265. - , RT = 500; --, RT = 300; ---, RT = 150. 
- 

carried out by Liepmann & Laufer (1947). Unfortunately their data are generally 
lower in value than those of recent experiments. Liepmann & Laufer measured the 
distributions of turbulent Reynolds stress (uv), longitudinal and transverse intensity 
of turbulent velocity fluctuations, (us) and (v2). However, they did not measure the 
lateral turbulent intensity (wz). More recently, similar experiments were performed 
by Wygnanski & Fiedler (1970), Patel (1973) and others. In  contrast to Liepmann & 
Laufer, Wygnanski & Fiedler found most of these quantities to have much larger 
values. The measured results of Patel (1973) appears to be most reliable, a t  least 
in the sense they can be reproduced. Also they represent the largest Reynolds number 
results available. Champagne et al. (1976) repeated the two-dimensional mixing layer 
experiment of Patel (with a trip wire) and found remarkable agreement with his 
turbulence measurements. Since the measured values of Champagne et al. differ very 
little from those of Patel, for the purpose of clarity (without cluttering the figures) 
we will omit their data when comparing our numerical results with experiments 
below. 

After the eigenvalues and eigenfunctions are determined the single point second- 
order turbulence statistics are obtained by numerical integration of the appropriate 
functions over the 0, 8 plane according to the formulae given in $3.  The constant R 
of equation (2.19) which appears as a multiplicative factor to all second-order tur- 
bulence statistics is found by imposing condition (2.20). Its  numerical value is deter- 
mined to be 0.016972. Traditionally, experimental data are presented in a co-ordinate 
system relative to the half velocity point of the mean flow where the value of y is 
usually denoted as yi. The half-velocity point co-ordinate 7 = a(y  - yi)/x is related 
to our similarity co-ordinate 7 by a simple translation, namely, T j  = 7+0.22  (see 
figure 4 ) .  For convenience, all our results will be presented in the T j  co-ordinate system. 
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FIGURE 13. Comparison of measured and computed Reynolds stress distribution in two-dimen- 
sional mixinglayers. Patel (1973) : 0, z = 28 cm; 0, z = 65.3 cm; 0, z = 102.5 cm. A, Wygnanski 
& Fiedler (1970); x , Liepmann & Laufer (1947); -, present calculation. 
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FIQURE 14. Comparison of measured and computed distribution of root-mean-square transverse 
turbulent velocity fluctuations. Patel (1973): 0, z = 28cm; 0, z = 65.3cm; 0, z = 102.5cm. 
A, Wygnanski & Fiedler (1970); x , Liepmann & Laufer (1947); -, present calculation. 

Figure 13 shows the calculated turbulent Reynolds stress distribution (uv)/ U: 
across the mixing layer. The measured data of Patel (1973), Wygnanski & Fiedler 
(1970) and Liepmann & Laufer (1947) are also plotted there. As can be seen the 
theoretical curve compares very favourably with Patel's measurements. The fact that 
the turbulent Reynolds stress peaks to the right, i.e. on the side of the uniform flow, 
of the half-velocity point is also predicted by the present statistical model. 

In figures 14, 15 and 16 the calculated distributions of root-mean-square transverse, 
longitudinal and lateral turbulent velocity fluctuations, (v2)4/Uw, (u2)a/Uw, and 
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FIGWE 15. Comparison of measured and computed distribution of root-mean-square longitudinal 
turbulent velocity fluctuations. Patel (1973): 0, t = 28cm; n, z = 65.3; 0, z = 102.5cm. 
A, Wygnanski & Fiedler (1970) ; x , Liepmann & Laufer (1 947) ; -, present calculation. 
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FIGURE 16. Comparison of measured and calculated distribution of root mean square lateral 
turbulent velocity fluctuations. Patel (1973) : 0, z = 28 cm; 0, z = 65.3 cm; 0, z = 102.5 cm. 
A, Wygnanski & Fiedler (1970) ; -, present calculation. 

(w2)J/U,  respectively are shown together with the measured data of Patel, Wygnanski 
& Fiedler and Liepmann & Laufer. Considering that the present model has no adjust- 
able constants the agreement with experimental values must be regarded as very 
satisfactory. Measurements indicate that the peak value of the root-mean-square 
longitudinal velocity fluctuations is about twice as large as that of the transverse and 
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FIGURE 17 .  Distribution of root-mean-square pressure fluctuations across the 
mixing layer. (No data available in the literature for comparison.) 

lateral components. This is reproduced by the model. I n  addition, the peak positions 
of the longitudinal and lateral turbulence intensity are again correctly calculated 
when compared with experiments. One disappointing feature, however, is the un- 
expected rapid drop-off of the model (uz)* /U,  distribution for negative values of Tj 
as shown in figure 15. The cause of this discrepancy is not completely known. But i t  is 
believed that a strong contributing factor is that the simple mean velocity profile 
given by equation (2.3a) does not fit the real situation as well as we wish. I n  addition the 
neglect of fine-scale turbulence in our model may also be a slightly larger source of 
error than was anticipated. 

Figure 17 shows the root-mean-square pressure distribution across the mixing 
layer as computed according to  the present model. As far as we know no such data 
are available in the literature. It would be interesting if new experiments can be 
carried out to test this prediction. 

Finally, figure 18 shows the calculated power spectrum of the longitudinal turbulent 
velocity fluctuations associated with the large structures of the mixing layer as a 
function of Strouhal number S = fx/U, on the plane y = 0. The spectrum peaks a t  
S !x 0.5 which agrees with Laurence’s measured data in the mixing layer of a jet 
shown in figure 3. The large structures in a jet are generally in the form of toroidal 
vortices. Far downstream of the nozzle exit the radii of these vortices are no longer 
small in comparison with the radius of curvature of the torus. As a result the large 
structures in a jet differ appreciably from those in a plane mixing layer. On comparing 
the spectrum of figure 18 and the spectra of the two axial stations closest to the nozzle 
exit of figure 3 remarkable agreement is found for frequencies below the peak value. 
The theoretical spectrum does not take into consideration the high frequency fine- 
scale turbulence components so that i t  drops off rapidly with increasing Strouhal 
number. This accounts for the narrowness of the calculated spectrum as compared 
to  figure 3. Pressure fluctuation power spectra measured in the potential cone of a jet 
away from fine-scale turbulence by KO & Davies (1971)) however, look qualitatively 
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FIGURE 18. Power spectrum of longitudinal turbulent velocity fluctuations associated 
with the large structures of two-dimensional mixing layers on the plane y = 0. 

very similar to that of figure 18. We believe these are evidence which support the 
contention of the present model that the power spectrum of the large structures is 
indeed quite narrow. 

5. Discussion 
In  this paper a quasi-equilibrium statistical model capable of predicting the second- 

order turbulence statistics of a two-dimensional mixing layer is developed. The 
numerical results of this model were compared with experimental measurements. 
Very favourable overall agreement is found. Often the validity of a model is judged 
not only on the soundness of its underlying physical principles but also on how well 
it can predict useful physical quantities. Here we would like to point out that for the 
latter purpose the following factor should be taken into consideration. The present 
model is developed for an idealized situation somewhat removed from many of the 
complications encountered in a real experiment. It is we11 known that in a test section 
of finite size a two-dimensional mixing layer very rarely attains a completely fully 
developed turbulent state. Under this condition the measured turbulence statistics 
in the mixing layer is subjected to the influence of the initial condition, namely, 
whether the boundary layer a t  the trailing edge of the splitter plate is laminar or 
turbulent. Experimentally such effect on the development of the mean flow of mixing 
layers was observed by Batt (1975). The intensity of upstream disturbances too, also 
have some influence on a turbulent mixing layer which is not fully developed. Brad- 
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shaw (1966) and Chandrsuda et al. (1978) have investigated this phenomenon and 
discussed its consequences. Indeed, these factors may well be the cause of disagree- 
ments among the different sets of experimental data obtained in the past as elaborated 
by Champagne e f  al. (1976). The point is, because of the variability of experimental 
conditions, our results must be viewed as providing only a best estimate of the tur- 
bulence characteristics of fully developed two-dimensional turbulent mixing layers in 
laboratory conditions. 

There exist presently in the literature several semi-empirical theories based on the 
closure approach (using averaged moment equations and turbulence transport models) 
which can predict certain single point second-order turbulence statistics. Some of these 
theories can be used to calculate distributions of turbulent Reynolds stresses, inten- 
sities of turbulent velocity components with accuracy comparable to our results. 
However, from a utilitarian point of view, the present statistical model may still be 
considered slightly superior to  these theories. For as far as is known, none of these 
theories can provide accurate estimates of the distribution of root-mean-square 
pressure fluctuations. I n  addition, one fundamental drawback of closure approach is 
that, as they are, the averaged equations cannot be used to compute power spectra 
as well as two-point space-time correlation functions. To conclude, we believe the 
present statistical model is unique, a t  least, in these respects. 

This work was supported by the NASA Langley Research Center under grant 
NSG-1329. 

Appendix 
Relationship between eigenvalue and eigenfunction with positive 

and negative frequencies and wavenumbers 

In  $ 2  the normal modes of the flow are taken to be given by the solutions of the 
Orr-Sommerfeld equation (2.1 1)  and boundary condition (2.12). They are 

8 + O  as q++co. (A 2) 
For given values of T j  and -ii (both are real), (A 1) and (A 2) form an eigenvalue problem. 
The eigenvalue is k and the eigenfunction is 8, which, in general, are complex. Now in 
(A 1 )  and (A 2) the parameter a appears as 2 so that the eigenvalue problem is 
invariant to the transformation ol+ - a. 

By taking the complex conjugate of (A 1) and (A 2) we have (*  denotes complex 
conjugate) 

2 

-a2- ( -k*)2]  O*-iRT [ [( - k*)gT - ( -G)]  ( -  ,*),I 8* - ( -  k*)  D;8* 

= 0,  (A 3) 

On comparing (A 1) and (A 2) with (A 3) and (A 4) it is clear that if k(E,Tj) is an 
eigenvalue then k ( E ,  - G )  = - k*@,  T j )  is also an eigenvalue. The corresponding eigen- 
function is 8*(q,E,  55) which is equal to O(q, ?i, - T j )  if normalization condition (2 .15a)  
is employed. 

8*+0 as q++co. (A 4) 
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